Chapter 4:
Sect. 4.3: Q14:

4.14 (a) An infinite sheet at z = 0 has a uniform charge density 12 nC/m? Find E on both
sides of the planar sheet. .

(b) A second sheet at z = 4 has a uniform charge density of 12 nC/m” Show that E

exists only between the planar sheets. Find E. -
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Sect. 4.4: Q24:

4.24 If D S sinfsinda, Jt cosBsinda, + cos pa, nC/m? find: (a) the charge density at
2, 30 60" the flux through r=2,0<6<30%0<d¢ <60°
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Sect. 4.5/6: Q30: Op 17 z

4.30 In a certain region, the electric field is given b

C
D =‘2p(2 + l)cosdyaiF(z + 1)sin p a, | ;LC/m2

] (a) Find the charge density.

(b) Calculate the total charge enclosed by the volume 0 <p <2, 0 <¢ < 7/2,
0<z<4. ——

] (c) Confirm Gauss'’s law by finding the net flux through the surface of the volume in (b).
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ECE220 — Electromagnetics
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Equations Sheet

Table - 1: Vector Identities

If A, B and C are vector fields, while 4, B, C, U and V are scalars, and n 1s integer then

A-B=ABcostyg
A X B = A Bsinfyz ay
AB =AC056A3 =A'a3

VU +V)=VU+VV

Uy v (U) - U (W)
V[V]_ vz
V-(A+B)=V-A+V-B

V-(VA)=VV-A+A-VV

scalar product
vector product

scalar component

A-(BxC)=B-(CxA)=C-(AxB) scalar triple product

Ax(BxC)=B(A-C)—C(A-B) vector triple product
Ag = Agag = (A-ag)ag vector component
V(UV)=UVW+VVU

VvVt =nvtlvy

V(A'B)=(A"V)B+(B-V)A+AXx (VXxB)+Bx (VxA)

V-(AXxB)=B-(VxA)—A-(VxB)

V- (VW) = V3V div grad Vx(A+B)=VxA+VxB

V-(VxA)=0 div curl Vx(AxB)=A(V-B)—-B(V-A)+(B-V)A—(A-V)B
Vx(VV)=0 curl grad Vx(VA)=VW xA+V(VxA)

Vx (VxA)=V(V-A)—VZ2A  curl curl ﬁle=—J;VdeS

fA'dl=fVXA'dS
I s

fA-dS=fV-A dv
- v

Cartesian (x,y,z)

A =Aa +Aa + Aa,
S L T LA
T ay YT "
A, 94, aA,
V-A = 4 —
ax ay az
a, a, a
Tra=f L S
ax ay az
A, A A
dA, 04, dA, 9A,
== al =T aY
dy dz az ax
[JA’ JAx:|
e a,
dx dy |~
v =V _ sz JIV (72"

Ay af
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Stokes’ Theorem

Divergence Theorem

fodS=—fV><Adv
s

»

deS=fVVdv
s v

Table - 2: Vector Derivatives

Spherical (r, 0, @)

Cylindrical (p, @, z)

A =A@, + Aa, + Aa, A=Al + Aa + Aay
, _av_ . 1av_ . av =g iV o 1 W
M i A ar T T30 Tsmoap *
1.9, 1 a 1 A,
V-A=——(r" - —{Ag si - —
. rar( Ar) rsinOJo(““smO) rsin@ ad
a, ra, (rsinf)a,
1 |a a a
VXA== — — —
" rsinf|ar a0 ad
A, rAy (rsin@) Ay
1 a A, 1f 1 3A, a ]
= —(A in@) — —— e — A
rsing [.30( 45in0) ad:] a’ r[sin() 26 ar ") 2
1[a A,
=== ==
P [Jr( o) 20 ]io
13/ av 13V @V 1af.,av 1 3 av T o U
VW =——Ilp—]+5—=+—5 V’V:——(r’—- + ——\sinf— | + ——
pap (p &p) P b | oz Far\" ar) " Fsmo a0 \"" " 30/ T Tsin%0 o
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Variables

Vector: A =

Magnitude of vector
Al =4=
Position vector
0P =

Distance between

two point d? =

Unit vectors

properties

Table - 3: Vector Relations

Cartesian

xX,Y,2

Axa, + Ayay + Aza;

’sz + 4,7 +4,°

xa, +yay, +za;
for P(x,y,z)

(x2 — x1)% + (y2 — y1)?

Cylindrical
P9,z
Aya, + Aya, + Aza,

,APZ + 4, + A7

pa, +za;
for P(p,¢,z)

p3 + p — 2p1p2 cos(@z — 1)

+ (2, —7)? +(z, — 7)?
a,"a,=a,"a,=a; a,=1 ap Ay =0y Ay =az Az =1
Ay Ay =Qy Az = Az Ay =0 Ay, Ay =Qp A=Az a, =0

a, xa,=a, a, Xxa, =a,
ay X a; = @y a, X a; = a,
a, xa,=a, a X a, =a,

Diff. length dl =

Diff. surface dS =

Diff. volume dv =

Cartesian to
Cylindrical

Cylindrical
to
Cartesian

Cartesian
to
Spherical

Spherical
to
Cartesian
Cylindrical
to

Spherical

Spherical to
Cylindrical

2|Page

Variables

p = [x2+yz
— s
¢ x
z=1z
X =pcose
y=psing
z=2z
r=x?+y2+z2
1‘/x2+y2
z

1y
Stangl—
q) X

6 = tan™

x =rsinf cosg@
y=rsinfsing

z=rcos@
r=p?+ 22
9=tan'1£
z

=9
p=rsiné

=9
z=rcosf

dxa, +dyay +dza,

dydza,
dx dz a,
dx dy a;

dx dy dz

dpa, + pdpa, + dza,
pdedza,
dpdz a,
pdpdya,
pdpdedz

Table - 4: Coordinate Transformation Relations

Unit Vectors

dHDMId_nnlg
oaallare Ciirdygi

Spherical

r,0,¢

Ara, + Agag + Aya,

/A,Z + A%+ A,°

—sin @]

a, =cos g ay +sing a, [4,] cosg sing 0
a, =—singa, +cosga, Ap| = [— sing cos¢ 0]
a,=a, | A, | 0 0 1
a,=cosga,—singa, [A,] cosg —sing 0
ay, =singa, + cosg a, Ay| = [simp cos @ 0]
a, = a, 4, | 0 0o 1
a, =sinf cosg a, +sinfsing a,
+ cosfa, [4,] [sinBcose sinfsing
ag = cosf cosg a, + cosfsing ay, Ag|=|cosfcosg cosfsing
—sinf a, |4p —sing cos@
a, = —singa, +cosgpa,
a, =sinfcosg a, + cosfcosg ag
—sing a, [Ax sinfcos¢ cosfcosg
a, =sinf@sing a, + cosfsing ag Ay| =|sinfsing cosfsing
+cosea, | A cos @ —sin@
a, =cosfa,—sinf ag
a, =sinf a, + cosb a, Ay sin@ 0 cos@
ag = cosfa, —sinf a, Ag| = [cos 8 0 —sin 9]
a, =a, Ao | 0o 1 o0

a, =sinf a, + cos 6 ag

a, =a

@

a, =cosfa, —sinf ag

@

4] sind cos@ O
Apl=1| 0 0o 1
|A,] Llcos@ —sin€ 0

|

r; + 7']2
— 21313 cos 6, cos 6,

— 2115 sin 6, sin 63 cos(@; — @1)
ar @, =0ag-ag =y ap =1

ra,

for P(r,6,¢)

a, Xag=a,

ag X a, = a,

a, X a, = ag

ar Qg =0g Ay =0y ar =0

dra, +rdfag + rsinf dga,

r?sin6 df do a,
rsin@dr de ag

rdrdf a,

r?sin@ dr dé do

Vector Components

cos @ 7
—sinf

0

cos ¢
0

Notes

cos@ =x/p
_ x

Vx? +y?
sing =y/p
_ y

“VE e

cosf@ =z/r
z

sin@ = p/r

S
[xZ+y2 + 22
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F= Q102

4meR2 R

F Q
E=—=-VV =

0 4meR2 °R
D=¢E

Y = Qenc = ésD -dS (integral)

-dl=0 (integral)
(differential)
ne2r
S ppya = E=0cE
v [E-dl p.l
L fg)eds S
Pps =Pra,
Ppy = —V P
dpy
V=%

E1t = Ezt, Din — Don = Ps
or Dln = D2n ( lfps = 0)

(differential)

Table - 5: Electrostatics Relations
Permittivity of free space: &, = 8.854 x 10712 ~ 107?/36m F/m. Permittivity of Dielectric: &€ = gy¢, F/m.

Force (N)

(point charge)

Electric field intensity
(point charge) (V/m) (N/C)

Electric flux density (C/m?)

Gauss’s law

(first Maxwell’s equation)
Potential at r due to point
charge O (centered at 1)

Potential at r due to dipole with
moment p (centered at1")

'7 cay = i) cof %otential at r due to dipole with

moment p (centered at origin)
Kirchhoff’s law
(second Maxwell’s equation)

Current density (A/m?)
¢: conductivity (O/m) (S/m)

Resistance (uniform) Q
pec = 1/0 : resistivity

Bound (or polarization) surface
and volume charge densities

Continuity equation

Boundary conditions
(Dielectric- Dielectric)

_ QN ulr-mo)

 dme r—1|3
& lr—ml

N
_ 1 Qr(r — 1)
4me — [r— 7|3

k
¢=Ln-ds

B
w=VL=—Qf E-d1=—fE-d1+c
A L

w
VAB=VB‘_VA=—=_ E'dl
Q L
n
1
Wg :EZ Qx Vi
k=1
__ b .
E= (2cosf a, +sinf ag)

4me r3
1 1 .
WE:E vD-EdU=5 VEIEI dv

_dQ_ .
I—E—L] ds

P=V1=12R:fE-]dv
v
P = xec0E
&
Tr=;

D, =¢E, =0, D, =¢E,=ps

dHQlJI daola
oaallare Ciirdygi

Force (N)

(superposition)

Electric field intensity
(superposition) (V/m) (N/C)
Electric flux (C)

Total work (J)
(potential energy)

Potential difference (J/C =V)

Electrostatic energy (J)
due to » point charges

Intensity due to dipole at
origin: p = |p| = Qd

Electrostatic energy (J)
(continuous volume charge)

Current (A)

Power (uniform) W

Polarization intensity (C/m?)
Xe = & — 1 : susceptibility

Relaxation time (sec)

Boundary conditions
(Conductor- Dielectric)

tanf; & e Boundary conditions
tanf, &, Law ofrefraction De = &oEe =0, Dn = £0Bn = s (Conductor- Free)
V:eVV = —p,  (inhomogeneous) ) ) ;
217 — __ Py Poisson’s equation VeV =0 Laplace’s equation
VeV = . (homogeneous)
Q J¢D-ds , e )
Cc= Vo Capacitance (F) RC =— RC relation
fL E " dl o
eS _ 2mel
== Parallel-Plate capacitance (F) - I b Coaxial capacitance (F)
Ila
_ e Isolated sphere
% B % Spherical capacitance (F) 4me a capacitance (F)
Line Surface Volume Unit
Total charge Q = f prdl fps as J Py AV = Qenc c
L S v
Field intensity E = pdl a ps ds a pv dv a
(finite charge distribution) , 4me R? R s4me R? R ,4me R? R N/C
. . se La p Q or
Ij"lel(_l mte.nsn_y E = 2mep P Ps N ez ar (V/m)
(infinite charge distribution) p : distance to field point 2¢ same as of a point charge
r
oL TPy, 0<r<=a C/m (line)
Field density D = S—ap Ps 3 > ey
(using Gauss’s law) 2mp 2 an a3 C/m? (surface)

g—

3|Page

372 Por,

r=a C/m? (volume)
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Sect. 4.9: Q62:
4.62 A dipole has dipole moment p = 2a, + 6a, — 4a2@3 -m. If the dipole is located in

— free space at (2, 3, -1), find the potential at (4, 0, 1).
A62: ‘
Tlsino ea (4 R1)
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PRACTICE EXERCISE 4.6

In Example 4.6 if the line x = 0, z = 2 is rotated through 90° about the point (0, 2, 2)
so that it becomes x = 0,y = 2, find Eat (1,1, —1).

Answer: —282.7a, + 565.5a, V/m.
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CH.4: H— <O

Coulomb’s law: F
The force F between two point charges Q1 and Q2 is:
e Along the line joining them
e Directly proportional to the product Q1Q2 of the charges
e Inversely proportional to the square of the distance R between them
The electric field intensity E:
the force that a unit positive charge experiences when placed in an electric field

Gauss’s Law: lf/ = CS% Q'AS = ch(
he

The total electric flux through any closed surface is equal to the total charge enclosed by
that surface

Electrostatic discharge (ESD):

—

The sudden transfer (discharge) of static charge between objects at different electrostatic
potentials. ESD poses a serious threat to electronic devices and affects the operation of the
systems the contains those devices.

What causes ESD? Static charge is a result of an unbalanced electrical charge at rest. For
example, its created by insulator surfaces rubbing together or pulling apart. One surface
gains electrons while the other loses electrons.

ESD can occur in one of four ways:

A charged body touches a device

A charged device touches grounded surface

A charged machine touches a device

An electrostatic field induces a voltage across a dielectric that Is sufficient to cause
breakdown

An ESD event take place in the following four stages :
Charge generations > charge transfer > device response > device failure.

Key measurements to qualify a company ESD control program:

e Treat everything as static sensitive

e Touch something grounded before handling electronic components
e Wear a grounded wrist strap whenever possible

e Keep the relative humidity at 40% of greater

e Don’t touch any leads pins or traces when handling charged devices

e Don’t move around a lot
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